Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(1): e0036123, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38047680

RESUMO

Pseudomonas aeruginosa is an opportunistic nosocomial pathogen responsible for a subset of catheter-associated urinary tract infections (CAUTI). In a murine model of P. aeruginosa CAUTI, we previously demonstrated that urea within urine suppresses quorum sensing and induces the Entner-Doudoroff (E-D) pathway. The E-D pathway consists of the genes zwf, pgl, edd, and eda. Zwf and Pgl convert glucose-6-phosphate into 6-phosphogluconate. Edd hydrolyzes 6-phosphogluconate to 2-keto-3-deoxy-6-phosphogluconate (KDPG). Finally, Eda cleaves KDPG to glyceraldehyde-3-phosphate and pyruvate, which enters the citric acid cycle. Here, we generated in-frame E-D mutants in the strain PA14 and assessed their growth phenotypes on chemically defined and complex media. These E-D mutants have a growth defect when grown on glucose or gluconate as the sole carbon source, which is similar to results previously reported for PAO1 mutants lacking E-D genes. RNA-sequencing following short exposure to urine revealed minimal gene regulation differences compared to the wild type. In a murine CAUTI model, virulence testing of E-D mutants revealed that two mutants lacking zwf and pgl showed minor fitness defects. Infection with the ∆pgl strain exhibited a 20% increase in host survival, and the ∆zwf strain displayed decreased colonization of the catheter and kidneys. Consequently, our findings suggest that the E-D pathway in P. aeruginosa is dispensable in this model of CAUTI. IMPORTANCE Prior studies have shown that the Entner-Doudoroff pathway is up-regulated when Pseudomonas aeruginosa is grown in urine. Pseudomonads use the Entner-Doudoroff (E-D) pathway to metabolize glucose instead of glycolysis, which led us to ask whether this pathway is required for urinary tract infection. Here, single-deletion mutants of each gene in the pathway were tested for growth on chemically defined media with single-carbon sources as well as complex media. The effect of each mutant on global gene expression in laboratory media and urine was characterized. The virulence of these mutants in a murine model of catheter-associated urinary tract infection revealed that these mutants had similar levels of colonization indicating that glucose is not the primary carbon source utilized in the urinary tract.


Assuntos
Gluconatos , Infecções por Pseudomonas , Infecções Urinárias , Animais , Camundongos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Cateteres , Carbono
2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014081

RESUMO

Pseudomonas aeruginosa is an opportunistic nosocomial pathogen responsible for catheter-associated urinary tract infections (CAUTI). In a murine model of P. aeruginosa CAUTI, we previously demonstrated that urea within urine suppresses quorum sensing and induces the Entner-Douderoff (E-D) pathway. The E-D pathway consists of the genes zwf, pgl, edd, and eda. Zwf and Pgl convert glucose-6-phosphate into 6-phosphogluconate. Edd hydrolyzes 6-phosphogluconate to 2-keto-3-deoxy-6-phosphogluconate (KDPG). Finally, Eda cleaves KDPG to glyceraldehyde-3-phosphate and pyruvate, which enters the citric acid cycle. Here, we generated in-frame E-D mutants in strain PA14 and assessed their growth phenotypes on chemically defined media. These E-D mutants have a growth defect when grown on glucose or gluconate as sole carbon source which are similar to results previously reported for PAO1 mutants lacking E-D genes. RNA-sequencing following short exposure to urine revealed minimal gene regulation differences compared to the wild type. In a murine CAUTI model, virulence testing of E-D mutants revealed that two mutants lacking zwf and pgl showed minor fitness defects. Infection with the ∆pgl strain exhibited a 20% increase in host survival, and the ∆zwf strain displayed decreased colonization of the catheter and kidneys. Consequently, our findings suggest that the E-D pathway in P. aeruginosa is dispensable in this model of CAUTI.

3.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858297

RESUMO

Transmembrane Ser/Thr kinases containing extracellular PASTA (penicillin-binding protein [PBP] and Ser/Thr-associated) domains are ubiquitous among Actinobacteria and Firmicutes species. Such PASTA kinases regulate critical bacterial processes, including antibiotic resistance, cell division, cell envelope homeostasis, and virulence, and are sometimes essential for viability. Previous studies of purified PASTA kinase fragments revealed they are capable of autophosphorylation in vitro, typically at multiple sites on the kinase domain. Autophosphorylation of a specific structural element of the kinase known as the activation loop is thought to enhance kinase activity in response to stimuli. However, the role of kinase phosphorylation at other sites is largely unknown. Moreover, the mechanisms by which PASTA kinases are deactivated once their stimulus has diminished are poorly understood. Enterococcus faecalis is a Gram-positive intestinal bacterium and a major antibiotic-resistant opportunistic pathogen. In E. faecalis, the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, and such antimicrobials trigger enhanced phosphorylation of IreK in vivo Here we identify multiple sites of phosphorylation on IreK and evaluate their function in vivo and in vitro While phosphorylation of the IreK activation loop is required for kinase activity, we found that phosphorylation at a site distinct from the activation loop reciprocally modulates IreK activity in vivo, leading to diminished activity (and diminished antimicrobial resistance). Moreover, this site is important for deactivation of IreK in vivo upon removal of an activating stimulus. Our results are consistent with a model in which phosphorylation of IreK at distinct sites reciprocally regulates IreK activity in vivo to promote adaptation to cell wall stresses.IMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes species and regulate critical processes, including antibiotic resistance, cell division, and cell envelope homeostasis. Previous studies of PASTA kinase fragments revealed autophosphorylation at multiple sites. However, the functional role of autophosphorylation and the relative impacts of phosphorylation at distinct sites are poorly understood. The PASTA kinase of Enterococcus faecalis, IreK, regulates intrinsic resistance to antimicrobials. Here we identify multiple sites of phosphorylation on IreK and show that modification of IreK at distinct sites reciprocally regulates IreK activity and antimicrobial resistance in vivo Thus, these results provide new insights into the mechanisms by which PASTA kinases can regulate critical physiological processes in a wide variety of bacterial species.


Assuntos
Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Adaptação Fisiológica , Anti-Infecciosos/farmacologia , Parede Celular/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Fosforilação
4.
Nat Commun ; 9(1): 4436, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361690

RESUMO

Chronic bacterial infections on medical devices, including catheter-associated urinary tract infections (CAUTI), are associated with bacterial biofilm communities that are refractory to antibiotic therapy and resistant to host immunity. Previously, we have shown that Pseudomonas aeruginosa can cause CAUTI by forming a device-associated biofilm that is independent of known biofilm exopolysaccharides. Here, we show by RNA-seq that host urine alters the transcriptome of P. aeruginosa by suppressing quorum sensing regulated genes. P. aeruginosa produces acyl homoserine lactones (AHLs) in the presence of urea, but cannot perceive AHLs. Repression of quorum sensing by urine implies that quorum sensing should be dispensable during infection of the urinary tract. Indeed, mutants defective in quorum sensing are able to colonize similarly to wild-type in a murine model of CAUTI. Quorum sensing-regulated processes in clinical isolates are also inhibited by urea. These data show that urea in urine is a natural anti-quorum sensing mechanism in mammals.


Assuntos
Infecções Relacionadas a Cateter/microbiologia , Interações Hospedeiro-Patógeno , Percepção de Quorum , Infecções Urinárias/microbiologia , Acil-Butirolactonas/farmacologia , Animais , Infecções Relacionadas a Cateter/patologia , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Fenótipo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Análise de Sequência de RNA , Ureia/farmacologia , Infecções Urinárias/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-28990312

RESUMO

Signaling pathways allow bacteria to adapt to changing environments. For pathogenic bacteria, signaling pathways allow for timely expression of virulence factors and the repression of antivirulence factors within the mammalian host. As the bacteria exit the mammalian host, signaling pathways enable the expression of factors promoting survival in the environment and/or nonmammalian hosts. One such signaling pathway uses the dinucleotide cyclic-di-GMP (c-di-GMP), and many bacterial genomes encode numerous proteins that are responsible for synthesizing and degrading c-di-GMP. Once made, c-di-GMP binds to individual protein and RNA receptors to allosterically alter the macromolecule function to drive phenotypic changes. Each bacterial genome encodes unique sets of genes for c-di-GMP signaling and virulence factors so the regulation by c-di-GMP is organism specific. Recent works have pointed to evidence that c-di-GMP regulates virulence in different bacterial pathogens of mammalian hosts. In this review, we discuss the criteria for determining the contribution of signaling nucleotides to pathogenesis using a well-characterized signaling nucleotide, cyclic AMP (cAMP), in Pseudomonas aeruginosa. Using these criteria, we review the roles of c-di-GMP in mediating virulence and highlight common themes that exist among eight diverse pathogens that cause different diseases through different routes of infection and transmission. WIREs RNA 2018, 9:e1454. doi: 10.1002/wrna.1454 This article is categorized under: RNA in Disease and Development > RNA in Disease.


Assuntos
Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/patogenicidade , Fatores de Virulência/biossíntese , Regulação Alostérica , Animais , GMP Cíclico/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais , Virulência
6.
ACS Chem Biol ; 12(12): 3076-3085, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29091392

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that affects a large proportion of cystic fibrosis (CF) patients. CF patients have dehydrated mucus within the airways that leads to the inability of the mucociliary escalator to expel inhaled microbes. Once inhaled, P. aeruginosa can persist in the lungs of the CF patients for the remainder of their lives. During this chronic infection, a phenomenon called mucoid conversion can occur in which P. aeruginosa can mutate and inactivate their mucA gene. As a consequence, transcription of the alg operon is highly expressed, leading to the copious secretion of the alginate exopolysaccharide, which is associated with decreased lung function and increased CF patient morbidity and mortality. Alginate biosynthesis by P. aeruginosa is post-translationally regulated by bis(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which binds to the receptor protein Alg44 to activate alginate production. The identification of small molecules that disrupt the binding of c-di-GMP to Alg44 could inhibit the ability of P. aeruginosa to produce alginate. In this work, a class of thiol-benzo-triazolo-quinazolinone compounds that inhibited Alg44 binding to c-di-GMP in vitro was identified after screening chemical libraries consisting of ∼50 000 chemical compounds. Thiol-benzo-triazolo-quinazolinones were shown to specifically inhibit Alg44-c-di-GMP interactions by forming a disulfide bond with the cysteine residue in the PilZ domain of Alg44. The more potent thiol-benzo-triazolo-quinazolinone had the ability to reduce P. aeruginosa alginate secretion by up to 30%. These compounds serve as leads in the development of novel inhibitors of alginate production by P. aeruginosa after mucoid conversion.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Quinazolinonas/farmacologia , Proteínas de Bactérias/genética , Sítios de Ligação , Ensaios de Triagem em Larga Escala , Proteínas de Membrana/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/metabolismo , Quinazolinonas/química , Relação Estrutura-Atividade
7.
J Mol Biol ; 429(15): 2324-2336, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28551334

RESUMO

Enterococcus faecalis, a leading cause of hospital-acquired infections, exhibits intrinsic resistance to most cephalosporins, which are antibiotics in the beta-lactam family that target cell-wall biosynthesis. A comprehensive understanding of the underlying genetic and biochemical mechanisms of cephalosporin resistance in E. faecalis is lacking. We previously determined that a transmembrane serine/threonine kinase (IreK) and its cognate phosphatase (IreP) reciprocally regulate cephalosporin resistance in E. faecalis, dependent on the kinase activity of IreK. Other than IreK itself, thus far the only known substrate for reversible phosphorylation by IreK and IreP is IreB, a small protein of unknown function that is well conserved in low-GC Gram-positive bacteria. We previously showed that IreB acts as a negative regulator of cephalosporin resistance in E. faecalis. However, the biochemical mechanism by which IreB modulates cephalosporin resistance remains unknown. As a next step toward an understanding of the mechanism by which IreB regulates resistance, we initiated a structure-function study on IreB. The NMR solution structure of IreB was determined, revealing that IreB adopts a unique fold and forms a dimer in vitro. Dimerization of IreB was confirmed in vivo. Substitutions at the dimer interface impaired IreB function and stability in vivo, indicating that dimerization is functionally important for the biological activity of IreB. Hence, these studies provide new insights into the structure and function of a widely conserved protein of unknown function that is an important regulator of antimicrobial resistance in E. faecalis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Resistência às Cefalosporinas , Enterococcus faecalis/química , Enterococcus faecalis/efeitos dos fármacos , Multimerização Proteica , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Análise Mutacional de DNA , Enterococcus faecalis/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica
8.
Infect Immun ; 84(12): 3458-3470, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27672085

RESUMO

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.


Assuntos
Brucella/patogenicidade , Brucelose/microbiologia , GMP Cíclico/análogos & derivados , Adaptação Fisiológica , Animais , Biofilmes , Brucella/metabolismo , Brucella/ultraestrutura , Brucelose/patologia , Células Cultivadas , GMP Cíclico/genética , GMP Cíclico/metabolismo , Aptidão Genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Sistemas de Secreção Tipo IV , Virulência
9.
Antimicrob Agents Chemother ; 57(12): 6179-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080657

RESUMO

Enterococcus faecalis is a Gram-positive bacterium that is a major cause of hospital-acquired infections, in part due to its intrinsic resistance to cephalosporins. The mechanism that confers intrinsic cephalosporin resistance in enterococci remains incompletely defined. Previously, we have shown that the Ser/Thr protein kinase and phosphatase pair IreK and IreP act antagonistically to regulate cephalosporin resistance in E. faecalis. We hypothesize that IreK senses antibiotic-induced cell wall damage and activates a signaling pathway leading to antibiotic resistance. However, the factors downstream of IreK have not yet been identified. To discover such factors, suppressor mutations that restored resistance to a ΔireK kinase mutant were identified. Mutations were found in IreB, a highly conserved gene of unknown function that is widespread among low-GC Gram-positive bacteria. We show that IreB plays a negative regulatory role in cephalosporin resistance and is an endogenous substrate of both IreK and IreP. IreB is phosphorylated on conserved threonine residues, and mutations at these sites impair cephalosporin resistance. Our results are consistent with a model in which the activity of IreB is modulated by IreK-dependent phosphorylation in a signaling pathway required for cephalosporin resistance and begin to shed light on the function of this previously uncharacterized protein.


Assuntos
Proteínas de Bactérias/genética , Resistência às Cefalosporinas/genética , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica , Monoéster Fosfórico Hidrolases/genética , Proteínas Serina-Treonina Quinases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Cefalosporinas/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/enzimologia , Testes de Sensibilidade Microbiana , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
10.
mBio ; 2(6): e00199-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22045988

RESUMO

UNLABELLED: Antibiotic-resistant enterococci are major causes of hospital-acquired infections and therefore represent a serious public health problem. One well-known risk factor for the acquisition of hospital-acquired enterococcal infections is prior therapy with broad-spectrum cephalosporin antibiotics. Enterococci can proliferate in patients undergoing cephalosporin therapy due to intrinsic cephalosporin resistance, a characteristic of the genus Enterococcus. However, the molecular basis for cephalosporin resistance in E. faecalis has yet to be adequately elucidated. Previously we determined that a putative Ser/Thr kinase, IreK (formerly PrkC), is required for intrinsic cephalosporin resistance in E. faecalis. Here we show that kinase activity is required for cephalosporin resistance and, further, that resistance in E. faecalis is reciprocally regulated by IreK and IreP, a PP2C-type protein phosphatase encoded immediately upstream of IreK. Mutants of two divergent lineages of E. faecalis lacking IreP exhibit remarkable hyperresistance to cephalosporins but not to antibiotics targeting other cellular processes. Further genetic analyses indicate that hyperresistance of the IreP mutant is mediated by the IreK kinase. Additionally, competition experiments reveal that hyperresistant ΔireP mutants exhibit a substantial fitness defect in the absence of antibiotics, providing an evolutionary rationale for the use of a complex signaling system to control intrinsic cephalosporin resistance. These results support a model in which IreK and IreP act antagonistically via protein phosphorylation and dephosphorylation as part of a signal transduction circuit to regulate cellular adaptation to cephalosporin-induced stress. IMPORTANCE: As a major cause of hospital-acquired infections, antibiotic-resistant enterococci represent a serious public health problem. Enterococci are well-known to exhibit intrinsic resistance to broad-spectrum cephalosporin antibiotics, a trait that enables them to proliferate in patients undergoing cephalosporin therapy, thereby predisposing these patients to acquisition of an enterococcal infection. Thus, inhibition of enterococcal cephalosporin resistance could represent an effective new strategy to prevent the emergence of hospital-acquired enterococcal infections. At this time, however, the molecular basis for cephalosporin resistance in E. faecalis is poorly understood. Our results begin to unravel the details of a new phosphorylation-dependent signal transduction system that controls cephalosporin resistance in enterococci. Deeper understanding of the mechanism underlying cephalosporin resistance in E. faecalis may enable the development of new therapeutics designed to reduce the incidence of hospital-acquired enterococcal infections.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência às Cefalosporinas , Enterococcus faecalis/enzimologia , Regulação Bacteriana da Expressão Gênica , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cefalosporinas/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Fosforilação , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética
11.
Cell Transplant ; 19(2): 245-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19878624

RESUMO

A major factor limiting the engraftment of transplanted stem cells after myocardial infarction is the low rate of retention in the infarcted site. Our long-term objective is to improve engraftment by enabling stem cells to recognize and bind infarcted tissue. To this end, we proposed to modify the surface of embryonic stem cells (ESCs) with the C2A domain of synaptotagmin I; this allows the engineered stem cells to bind to dead and dying cardiac cells by recognizing phosphatidylserine (PS). The latter is a molecular marker for apoptotic and necrotic cells. The C2A domain of synaptotagmin I, which binds PS with high affinity and specificity, was attached to the surface of mouse ESCs using the biotin-avidin coupling mechanism. Binding of C2A-ESCs to dead and dying cardiomyocytes was tested in vitro. After the surface modification, cellular physiology was examined for viability, pluripotency, and differentiation potential. C2A covalently attached to the ESC surface at an average of about 1 million C2A molecules per cell under mild conjugation reaction conditions. C2A-ESCs avidly bound to dying, but not viable, cardiomyocytes in culture. The normal physiology of C2A-modified ESCs was maintained. The binding of C2A-ESCs to moribund cardiomyocytes demonstrates that the retention of transplanted cells may be improved by conferring these cells with the ability to bind infarcted tissue. Once established, this novel approach may be applicable to other types of transplanted therapeutic cells.


Assuntos
Células-Tronco Embrionárias/transplante , Infarto do Miocárdio/terapia , Animais , Sobrevivência Celular , Células Cultivadas , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Propriedades de Superfície , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...